
A Prototype Application Protocol for
Ready-to-Wear Pattern Making

Y. Tina Lee & Howard T. Moncarz
Factory Automation Systems Division
Manufacturing Engineering Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899

ABSTRACT

A Ready-to-Wear Pattern Making Information Model is introduced for extending the
emerging international Standard for the Exchange of Product Model Data (STEP) to include
the exchange of apparel pattern data. This model focuses on a representation of
two-dimensional (flat) patterns generated by the traditional ready-to-wear pattern making and
grading method. A testing methodology of the information model is also described in this
paper.

KEYWORDS

apparel, application protocol, APDES, CIM, data exchange, grading, pattern, PDES, product
data, STEP

1

PREFACE

The apparel industry has used computers to great advantage to automate many of its
manufacturing processes. However, these advancements often stand alone as "islands of
automation." Integrating these separate automated processes could greatly improve the
effectiveness of the entire enterprise.

A set of manufacturing data standards that can enable integration of the functions in an
apparel enterprise can be based on the Standard for the Exchange of Product Model Data
(STEP). STEP is an emerging international standard1 for representing the physical and
functional characteristics of a product throughout the product’s life cycle. As a standard,
STEP will permit communications among computer environments, each of which performs
various product life cycle functions. An advantage of STEP is that it will support the
integration of the computer environments using a shared database.

Many of the information requirements as well as the software tools being developed to
support STEP are applicable for any manufacturing industry. To serve the needs for a
particular industry, Application Protocols (APs) are developed that designate the specific
information and application requirements for that industry. The APs draw upon integrated
resources2 to share the same information among different APs.

In recent years, the National Institute of Standards and Technology (NIST) has been working
on a project to develop a suite of APs to support computer integration of the apparel product
life cycle. This project is sponsored by the Defense Logistics Agency (DLA), and the work
is being carried out in cooperation with the American Apparel Manufacturers Association
(AAMA). The project has been named the APDES project. APDES stands for Apparel
Product Data Exchange Standard.

The APDES project is part of a substantial program sponsored by DLA to improve apparel
manufacturing technology. The DLA program is advancing technology from traditional

1Refer to ISO 10303-1, Industrial Automation Systems and
Integration–Product Data Representation and Exchange–Overview and Fundamental
Principles , to be published.

2Integrated resources are "a set of STEP Parts which provide
application-independent information models for widely-used types of
information. Integrated resources support communication between diverse
applications by providing an agreed upon set of definitions and meanings for
data that are independent of specific application requirements" [KRA].

2

size-based methods (ready-to-wear) to methods that use body measurement data directly
(made-to-measure). Additionally, the program is advancing production methods from fixed
procedures based on standard products to flexible, computer-integrated manufacturing using
product representation standards to communicate requirements. The new technologies
developed will lead to better fit, higher product quality, economic unit production methods,
and quick response. All told, the program is a broad evolution toward integrated enterprises,
in which all phases of a product’s life cycle are coordinated through a framework of
standards, concurrent engineering practice, and supporting technology.3

The goal for the APDES project is to develop manufacturing data standards, based on STEP,
that will support integration of the projects that DLA is sponsoring. The first objective, when
the APDES project began, was to demonstrate the feasibility of using STEP for apparel. The
objective was accomplished by developing an information model for pattern data using STEP
technology [LEE1]. The information model was represented in the EXPRESS modeling
language [ISO11]. The model was implemented in a computer program that exchanges
pattern data between two proprietary industry formats [MON]. A neutral set of data
structures, based on the information model developed, was used as the intermediary in this
process. It was concluded that STEP APs can provide the information interfaces to integrate
the apparel product life cycle.

The timeline required for integrating the DLA-sponsored research projects is insufficient to
enable the development and integration of formal STEP APs. Instead, a suite of "prototype"
APs will be developed.4 A prototype AP will not require industry consensus, and it will
consist of four main components:

Scope: general description of the information requirements and the applications
supported

Application Reference Model (ARM): an information model that formally describes
the information requirements and constraints for an application domain. The
model uses terminology that is familiar to an expert from the application
domain. In a prototype AP, the ARM is expressed in the formal computer

3Much of DLA’s sponsored apparel research is published in the annual
Academic Apparel Research Conference proceedings. The most recent conference
was held February 17-18, 1992 [DLA].

4NIST is concurrently working on the development of formal STEP APs for
the apparel industry [LEE2].

3

language, EXPRESS, and is used in implementing the application interfaces5

Conformance Testing (CT) Requirements: testing requirements to demonstrate that an
application that implements the prototype AP does so correctly

Useage Guide: a manual that contains a written description of the Scope, the
Application Reference Model, and the Conformance Testing Requirements to
enable a developer to implement the AP into an application

A formal STEP AP that is developed according to ISO guidelines [PAL] requires a formal
documentation and quality review process, as well as an extensive, consensus gathering effort.
Additionally, a formal STEP AP requires one more component:

"Application Interpreted Model (AIM): a model that describes the interpretation of the
integrated resource constructs that provide functional equivalence to the AP’s
information requirements as specified in the application reference model. The
form of an AIM is an EXPRESS schema" [PAL].

The intention for the APDES project was to develop CT requirements and procedures for the
prototype APs, based on STEP methodology. Unfortunately, the CT methodology is still
evolving. There is not yet a clear, documented consensus of what constitutes an abstract test
suite6 and the methodology to create it. There is not yet a documented methodology for

5In a formal STEP AP, the ARM can be described in one of three
information modeling languages (EXPRESS, NIAM [NIJ], or IDEF1X [USA]), and is
developed from the point of view of the application domain, without regard to
the rest of STEP’s resources. It is then mapped to the AIM, which is written
in EXPRESS, and uses constructs from the STEP integrated resources. An
application that implements the AP will be based directly on the EXPRESS
version of the AIM.

6The following terminology is used in STEP Conformance Testing (quoted from [ISO31]):
abstract test case One or more files, encapsulating a test purpose and independent of both the

implementation and the numerical values, which provide the formal basis from
which executable test cases are derived

abstract test group A named set of related abstract test cases
abstract test suite A complete set of abstract test cases, possibly combined into nested abstract

test groups, that is necessary to perform conformance testing for a standard or
group of standards

executable test case An instantiation of an abstract test case with values NOTE: The form of the
realization is still under development [KEM]

executable test suite A complete set of executable test cases that is necessary to perform
conformance testing for a standard or group of standards

test purpose A precise description of the objective which an abstract test case is designed

4

translating abstract test suites to executable test suites. Consequently, the prototype AP
specified in this report describes the procedures for Conformance Testing, but the formal test
requirements are not defined.

This report presents the prototype Ready-to-Wear Pattern Making AP. The information model
used is a refinement of a previous model developed at NIST [LEE1]. For a proposed STEP
AP to be approved by the official STEP sanctioning organization–the International
Organization for Standardization–an extensive, consensus gathering effort in the industry must
be undertaken. The prototype APs that are currently being developed in the APDES project
can be used as initial proposals for developing official STEP standards for apparel. NIST will
continue to work with the AAMA to extend the prototype Ready-to-Wear Pattern Making AP
to a formal AP. The work will be carried out in cooperation with standards organizations, the
apparel manufacturing industry, and academia.

to achieve

5

TABLE OF CONTENTS

ABSTRACT ..iii

KEYWORDS ..iii

PREFACE .v

1 INTRODUCTION . 1

2 SCOPE . 1

3 INFORMATION MODEL .2

4 SCHEMA . 4

5 SAMPLE EXCHANGE FILE 14

6 CONFORMANCE TESTING15

APPENDIX A: REFERENCES. 18

APPENDIX B: GLOSSARY OF EXPRESS TERMS 19

APPENDIX C: SAMPLE STEP EXCHANGE FILE 22

6

A Prototype Application Protocol for
Ready-to-Wear Pattern Making

Y. Tina Lee & Howard T. Moncarz
Factory Automation Systems Division
Manufacturing Engineering Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899

1 INTRODUCTION
The Apparel Product Data Exchange Standard (APDES) is a series of specifications, currently
under development, for the computer-sensible representation and exchange of apparel product
data. The specifications will provide a mechanism capable of describing product data
throughout the life cycle of an apparel product, independent from any particular system. The
nature of this description makes it suitable not only for file exchange, but also as a basis for
implementing and sharing product databases, and archiving.

APDES is based on, and in time will extend, another series of standards called the Standard
for the Exchange of Product Model Data, or STEP, currently being developed by the
International Organization for Standardization (ISO). In STEP, each International Standard in
the series is called a Part and is published separately. Parts are grouped into the following
classes: description methods, integrated resources, application protocols, implementation forms
and conformance testing. The classes are described in the STEP Overview, ISO 10303-1.

All specifications in the APDES series are application protocols. The specification defined in
this report addresses the industrial need to exchange ready-to-wear apparel pattern data
between different apparel pattern making software systems, and also between pattern making
and marker making systems.

2 SCOPE
This prototype AP specifies the information necessary to represent two-dimensional flat
patterns for the purpose of facilitating communication between apparel CAD/CAM,
ready-to-wear, pattern making systems. The AP supports the capabilities of representing the
base pattern geometry, the sizing data, and the grading rules which are based on the
traditional X-Y grading methods. It does not support the following capabilities: the
relationship between pattern pieces, non x-y grading methods, and alteration options to the
pattern piece.

1

3 INFORMATION MODEL

The information model is one of the STEP AP components. It defines the data types that can
be used to define products. In this section, we introduce a Ready-to-Wear Apparel Pattern
Making (RWPM) information model written in the EXPRESS language. The model describes
the information necessary for a ready-to-wear apparel pattern. The model is independent of
the integrated resources of STEP.

The EXPRESS information modeling language was developed by ISO as a way to precisely
and completely describe all the data elements for defining objects. EXPRESS is described in
the "EXPRESS Language Reference Manual" [ISO11]. The exchange medium for STEP
product models is the STEP physical file. A STEP physical file contains instances of the
various entities defined by the EXPRESS information model. The STEP exchange format,
and the mapping from EXPRESS to the STEP physical file, are described in "Clear Text
Encoding of the Exchange Structure" [ISO21]. These methodologies form the basis of the
APDES project.

An EXPRESS schema is composed of type declarations, entities, and constraints. The
RWPM schema is explained in detail in the next section. The following is the list of types
and entities, with associated section numbers and page numbers of this documentation, used
in this model.

TYPES:
composite_curve_feature_type (Section 4.1.3; page 5)
mark_feature_type (Section 4.1.1; page 4)
measurement_unit (Section 4.1.4; page 5)
orientation_constraint_type (Section 4.1.2; page 4)
pattern_mirror_type (Section 4.1.5; page 5)

ENTITIES:
annotation_feature (Section 4.2.10; page 9)
arc (Section 4.2.12; page 9)
basic_pattern_piece (Section 4.2.15; page 10)
bounded_curve (Section 4.2.11; page 9)
composite_curve_feature (Section 4.2.14; page 10)
grade_data_at_point (Section 4.2.20; page 12)
grade_delta (Section 4.2.19; page 12)
grade_point (Section 4.2.18; page 11)
grade_rules_of_piece (Section 4.2.21; page 12)

2

grade_rules_of_pattern (Section 4.2.22; page 13)
line (Section 4.2.3; page 6)

mark_feature (Section 4.2.5; page 7)
notch_feature (Section 4.2.6; page 7)
orientation_constraint (Section 4.2.9; page 8)
pattern (Section 4.2.17; page 11)
pattern_geometry_entity (Section 4.2.4; page 7)
pattern_piece (Section 4.2.16; page 11)
pattern_size (Section 4.2.1; page 6)
point (Section 4.2.2; page 6)
polyline (Section 4.2.13; page 9)
slit_notch (Section 4.2.8; page 8)
ready_to_wear_pattern (Section 4.2.23; page 13)
v_notch (Section 4.2.7; page 8)

The entities include a broad range of data types, from simple points to complex entities such
as patterns. The way these entity classes are related is specified by the model schema, which
is described next.

3

4 SCHEMA

This section describes the detailed information for the RWPM schema. Types and entities are
defined formally here in EXPRESS. Appendix A contains the listing of EXPRESS keywords
that are used in the RWPM schema. The concept of a type in EXPRESS is similar to that of a
data type in a standard programming language. It defines the kind of values that an object
may assume. Entities are the main building blocks of an EXPRESS information model. An
entity declaration describes the information content of an object, as well as some of the
constraints on the object. The schema is presented here in a "bottom-up" order: type
definitions are presented first, followed by entity definitions. The more specific entity
definitions are described before they are used in the definition of more complex entities. In
the EXPRESS language, a "remark" is used for documentation and is not significant as a
language element. The character pair, "(" and "*", is used to denote the start of an embedded
remark, and the character pair, "*" and ")", is used to denote its end. An embedded remark
may appear between any two tokens. In this report, the documentation is presented as
embedded remarks. Consequently, this entire report can be read into an EXPRESS parser for
further analysis [CLA].

*)

SCHEMA rwpm_schema;

(*

4.1 Type Definitions

This section contains the type definitions.

4.1.1 Mark Feature Type

A mark_feature_type provides the means to indicate a mark on the pattern. This is used as
an aid for subsequent cutting and sewing procedures. Mark_feature_type is an enumeration of
drill hole, lift and plunge point, stacking point, facing point, and cut entry point. It is used as
the type of an attribute defined in the mark_feature entity.

*)

TYPE mark_feature_type = ENUMERATION OF (
drill_hole,

4

lift_and_plunge_point,
stacking_point,
facing_point,
cut_entry_point);

END_TYPE;

(*

4.1.2 Orientation Constraint Type

An orientation_constraint_type provides a means of specifying the orientation of the pattern
piece or supporting symmetrical pattern pieces. The pattern piece may be aligned with the
fabric’s grain, or with some feature of the fabric’s decorative design.
Orientation_constraint_type is an enumeration of grain reference line, stripe reference line,
plaid reference line, and mirror line. It is used as the type of an attribute defined in the
orientation_constraint entity.

*)

TYPE orientation_constraint_type = ENUMERATION OF (
grain_reference_line,
stripe_reference_line,
plaid_reference_line,
mirror_line);

END_TYPE;

(*

4.1.3 Composite Curve Feature Type

A composite_curve_feature_type provides a means of expressing the purpose of a curve on a
pattern piece. This type is an enumeration of boundary cut, internal cut out, seam line, and
sew line. It is used as the type of an attribute defined in the composite_curve_feature entity.

*)

TYPE composite_curve_feature_type = ENUMERATION OF (
boundary_cut,
internal_cut_out,

5

seam_line,
sew_line);

END_TYPE;

(*

4.1.4 Measurement Unit Type

A measurement_unit provides a means to define the units of length. The units of length
refers to the basic units of measurement employed for the given model data.
Measurement_unit is an enumeration of centimeter and inch.

*)

TYPE measurement_unit = ENUMERATION OF (
centimeter,
inch);

END_TYPE;

(*

4.1.5 Pattern Mirror Type

A pattern_mirror_type provides the means to identify the mirror information of the pattern
piece. It is an enumeration of basic, horizontal mirror, and vertical mirror. A mirror pattern
is a mirror-image of the basic pattern in the horizontal or vertical direction.
Pattern_mirror_type is used as the type of an attribute defined in the pattern_piece entity.

*)

TYPE pattern_mirror_type = ENUMERATION OF (
basic,
horizontal_mirror,
vertical_mirror);

END_TYPE;

(*

6

4.2 Entity Definitions

This section defines the entities for the RWPM schema. All pattern geometry is defined in a
Cartesian coordinate system.

4.2.1 Pattern Size

A garment size designation is merely an arbitrary name or number for a given compilation of
anthropometric measurements. With this designation, the garment will fit someone whose
measurements lie within certain range limits of the size measurements. A pattern_size entity
is represented in terms of an abstract size number (a real number) and optionally, an alternate
size (a text string). Size number may be the same as an actual body dimension (e.g., neck
size for men’s shirts) or maybe a number that is not the same as the body measurements used
to establish the size (e.g., women’s dress size). Alternate size may be used to define a size
group or to define some body dimensions that are important to the type of garment but not
specified in the size number. Size group is used to specify a group which may be based on
length (e.g., short, regular, or long), or may be based on proportion (e.g., Junior, Miss, or
Woman). Body dimensions may include circumferential designation and longitudinal
designation.

*)

ENTITY pattern_size;
size_number: REAL;
alternate_size: OPTIONAL STRING;

END_ENTITY;

(*

4.2.2 Point

A point entity specifies a location on a pattern piece. It consists of an X value and a Y
value. Coordinates are defined from an unspecified origin, determined by the application.

*)

ENTITY point;
x, y: REAL;

END_ENTITY;

7

(*

4.2.3 Line

A line entity defines a line segment. It consists of two points.

*)

ENTITY line;
location1, location2: point;

END_ENTITY;

(*

4.2.4 Pattern Geometry Entity

A pattern_geometry_entity is an abstraction of mark_feature entity, notch_feature entity,
orientation_constraint entity, annotation_feature entity, and composite_curve_feature entity.
(Note: The abstract supertype entity is defined for classification purposes only, and is not ever
directly instantiated except through its specific subtypes.)

*)

ENTITY pattern_geometry_entity
ABSTRACT SUPERTYPE OF (

ONEOF (
mark_feature,
notch_feature,
orientation_constraint,
annotation_feature,
composite_curve_feature));

END_ENTITY;

(*

4.2.5 Mark Feature

A mark_feature entity, a subtype of pattern_geometry_entity, specifies a drill hole, a lift and

8

plunge point, a stacking point, a facing point, or a cut entry point on the pattern piece. It is a
point together with a mark_feature_type.

*)

ENTITY mark_feature
SUBTYPE OF (pattern_geometry_entity);

feature_type: mark_feature_type;
location: point;

END_ENTITY;

(*

4.2.6 Notch Feature

A notch_feature entity, a subtype of pattern_geometry_entity, specifies a notch on the pattern
piece. Notches are represented in a variety of ways. A notch base point may be given with
angle and depth information to define an angled slit notch. Alternately, a v-notch is defined
by the notch base point with depth and width. Thus a notch_feature is an abstraction of
v_notch entity and slit_notch entity. Both sub-types inherit the notch base point attribute.

*)

ENTITY notch_feature
SUBTYPE OF (pattern_geometry_entity)

ABSTRACT SUPERTYPE OF (
ONEOF (v_notch,

slit_notch));
notch_base_point: point;

END_ENTITY;

(*

4.2.7 V Notch

A v_notch entity, a subtype of notch_feature entity, specifies a v-shaped cut on the pattern
piece. It is defined by depth and width of the notch.

*)

9

ENTITY v_notch
SUBTYPE OF (notch_feature);

depth, width: REAL;
END_ENTITY;

(*

4.2.8 Slit Notch

A slit_notch entity, a subtype of notch_feature entity, specifies an angled slit cut on the
pattern piece. It is defined by a depth value and an angle of a notch.

*)

ENTITY slit_notch
SUBTYPE OF (notch_feature);

depth, angle: REAL;
END_ENTITY;

(*

4.2.9 Orientation Constraint

An orientation_constraint entity, a subtype of pattern_geometry_entity, is a direction
specification on the pattern piece. It is characterized by a line,that defines the location of the
orientation on the drawing, together with an orientation_constraint_type.

*)

ENTITY orientation_constraint
SUBTYPE OF (pattern_geometry_entity);

feature_type: orientation_constraint_type;
location: line;

END_ENTITY;

(*

10

4.2.10 Annotation Feature

An annotation_feature entity, a subtype of pattern_geometry_entity, is an annotation feature
on the pattern piece presented for informational purposes; it does not represent a feature of
the cut piece. It consists of a text string and a line for locating and orienting text. The
annotation_feature entity may be used to define style lines, user defined internal lines, etc.

*)

ENTITY annotation_feature
SUBTYPE OF (pattern_geometry_entity);

text: STRING;
location: line;

END_ENTITY;

(*

4.2.11 Bounded Curve

A bounded_curve entity is an abstraction of arc entity and polyline entity.

*)

ENTITY bounded_curve
ABSTRACT SUPERTYPE OF (

ONEOF (arc,
polyline));

END_ENTITY;

(*

4.2.12 Arc

An arc entity, a subtype of bounded_curve entity, specifies an arch-shaped segment of a
curve. It consists of three points: a start point, an intermediate point, and an end point.

*)

ENTITY arc

11

SUBTYPE OF (bounded_curve);
start_point, intermediate_point, end_point: point;

END_ENTITY;

(*

4.2.13 Polyline

A polyline entity, a subtype of bounded_curve entity, is a bounded curve of line segments. It
consists of an ordered collection of points that are connected using straight lines.

*)

ENTITY polyline
SUBTYPE OF (bounded_curve);

points: LIST [2:?] of point;
END_ENTITY;

(*

4.2.14 Composite Curve Feature

A composite_curve_feature entity, a subtype of pattern_geometry_entity, is a geometry entity
that defines a curve in the drawing. It is a composite curve (an ordered collection of
bounded_curves joined end to end) together with a composite_curve_feature_type.

*)

ENTITY composite_curve_feature
SUBTYPE OF (pattern_geometry_entity);

feature_type: composite_curve_feature_type;
composite_curve: LIST [1:?] of UNIQUE bounded_curve;

END_ENTITY;

(*

4.2.15 Basic Pattern Piece

A basic_pattern_piece entity defines the base shape of one pattern piece of a garment for a

12

particular size. It has identification information, a set of pattern_geometry_entities, and
optionally, a tolerance value (a real number). The identification information includes a piece
name and optionally, a description. The piece name is a unique pattern piece name within a
pattern. The description is a piece identification for the operator to use. If a tolerance value
is defined in a pattern entity instance, the value is applied to all pattern pieces of the garment.
However, the basic_pattern_piece allows this value to be redefined. Thus if a tolerance value
is defined in a basic_pattern_piece entity instance, it overrides the tolerance value that is
given at the pattern entity instance. A basic_pattern_piece may be repeated either as is or in
a mirrored form for one garment (e.g. identical, but mirrored, pieces for shirt sleeves).

*)

ENTITY basic_pattern_piece;
piece_name: STRING;
description: OPTIONAL STRING;
geometry_entities: SET [1:?] OF pattern_geometry_entity;
tolerance: OPTIONAL REAL;
UNIQUE piece_name;

END_ENTITY;

(*

13

4.2.16 Pattern Piece

A pattern_piece entity defines a pattern piece of a garment for a particular size and the total
number of this piece required in the garment. It is defined by a basic_pattern_piece with a
pattern_mirror_type, and a quantity of the pattern piece.

*)

ENTITY pattern_piece;
piece: basic_pattern_piece;
mirror_type: pattern_mirror_type;
quantity: INTEGER;

END_ENTITY;

(*

4.2.17 Pattern

A pattern entity belongs to a garment and defines the garment shape for a particular size. It
is defined by a garment style name, a garment description for the operator to use, a set of
pattern_pieces, and optionally, a tolerance value. If a tolerance value is defined in a pattern
entity instance, the value is applied to all pattern pieces of the garment. However, the
basic_pattern_piece allows this value to be redefined.

*)

ENTITY pattern;
style_name: STRING;
description: OPTIONAL STRING;
tolerance: OPTIONAL REAL;
pattern_pieces: SET [1:?] OF pattern_piece;

END_ENTITY;

(*

4.2.18 Grade Point

A grade_point entity specifies a grade point on a pattern piece. Points on a pattern piece may
or may not be subject to a grading rule. A grade_point is defined by a point, and a unique

14

grade point identifier.

*)

ENTITY grade_point;
location: point;
identifier: STRING;
UNIQUE location, identifier;

END_ENTITY;

(*

4.2.19 Grade Delta

A grade_delta entity specifies a displacement vector on a drawing. It consists of a delta-X
value and a delta-Y value. The delta-X and delta-Y values are the amounts of growth in the
X and Y directions at the grading point between two grading sizes.

*)

ENTITY grade_delta;
delta_x, delta_y: REAL;

END_ENTITY;

(*

4.2.20 Grade Data At Point

A grade_data_at_point entity is an ordered collection of the displacements of the specified
grading point for a set of predefined grading sizes. It is defined by a grade_point, a smooth
option (which provides a means of determining that the grading curve will be generated with
or without smoothing at the grade point), a set of grade_delta, and optionally, an alternate
grade reference line. If an alternate grade reference line is defined in an entity instance, it
overrides the grade reference line of the pattern piece that is given at the
grade_rules_of_piece entity instance.

*)

ENTITY grade_data_at_point;

15

point: grade_point;
smooth_option: BOOLEAN;
grade_deltas: LIST [1:?] OF grade_delta;
alternate_grade_reference_line: OPTIONAL line;

END_ENTITY;

(*

4.2.21 Grade Rules Of Piece

A grade_rules_of_piece entity contains the information for grading a pattern piece for a set of
predefined sizes. It consists of a piece name, a set of grade_data_at_point, and optionally, a
rules identifier and a grade reference line. If a grade reference line is defined in an entity
instance, it is applied to all grade points of the pattern piece.

*)

ENTITY grade_rules_of_piece;
piece_name: STRING;
identifier: OPTIONAL STRING;
grade_reference_line: OPTIONAL line;
rules: SET OF grade_data_at_point;
UNIQUE piece_name, identifier;

END_ENTITY;

(*

4.2.22 Grade Rules Of Pattern

A grade_rules_of_pattern entity contains the information for grading a pattern for a set of
predefined sizes. It consists of an ordered collection of pattern sizes that include the base
size, a set of grade_rules_of_piece, and optionally, a rules identifier.

*)

ENTITY grade_rules_of_pattern;
identifier: OPTIONAL STRING;

16

pattern_sizes: LIST [2:?] OF UNIQUE pattern_size;
rules: SET OF grade_rules_of_piece;

END_ENTITY;

(*

4.2.23 Ready-To-Wear Pattern

A ready_to_wear_pattern entity defines a graded pattern for all sizes. It is defined by a
pattern, a pattern_size (the size of the base pattern), and optionally, a grade_rules_of_pattern.
The ready_to_wear_pattern is defined with a common unit of measurement.

*)

ENTITY ready_to_wear_pattern;
unit: measurement_unit;
base_size: pattern_size;
base_pattern: pattern;
grade_rules: OPTIONAL grade_rules_of_pattern;

END_ENTITY;

END_SCHEMA; -- end rwpm_schema

(*

17

5 SAMPLE EXCHANGE FILE

A sample pattern piece is provided for illustrating an example of a STEP exchange structure
physical file (STEP file). Figure 1 presents a sketch of the sample pattern piece. The same
piece was represented in a STEP file based on the RWPM schema presented above.
Appendix B contains the listing of the STEP file. The file contains both the data for the base
pattern piece as well as grading information for that pattern piece.

Each STEP file consists of two sections: the HEADER section and DATA section. The file
shall begin with "ISO-10303-21;", and be terminated by "END-ISO-10303-21;". The
HEADER section contains information that is applicable to the entire exchange structure. The
DATA section contains the product data to be transferred, it contains instances of entities
which correspond to an EXPRESS schema. The STEP file format is considered to be a
continuous stream of characters from the basic alphabet. These characters are collected into
recognizable sequences of characters called tokens (keywords or simple data types). When
printing the STEP file, the print control directives (such as a new line) are used to aid
readability. A STEP entity instance name consists of a "number" sign (#) followed by an
unsigned integer of 1 to 9 digits. Entity instance names are used as identifiers when they
appear in the exchange file just before the equal sign in an entity instance. Entity instance
names are also used as references to other entities when they appear inside of an entity’s
attribute list. Both forward and backward references are permitted.

Nest of "Pattern Piece 1004" for base size (14)
and four graded sizes (6, 12, 16, 22)

Figure 1: Sketch of Sample Pattern Piece

18

6 CONFORMANCE TESTING

This section specifies requirements and procedures for conformance testing of applications
that implement the RWPM Prototype AP. Note that the Conformance Testing (CT)
procedures specified do not require special software to be used to assist in the testing.
However, special CT software could improve the efficiency and quality of testing.

Section 6.1 introduces a number of new acronyms and definitions. Section 6.2 specifies the
requirements of the application that is being tested for conformance with the AP. The
application being tested is called the Implementation Under Test (IUT). Section 6.3 specifies
the requirements of the system that must be used to test conformance of the IUT. Finally,
section 6.4 specifies the responsibilities of the Test Site and the Developer, and specifies the
procedures that will be used to test the IUT.

6.1 Acronyms And Definitions

AP file STEP physical file for RWPM AP
CT Conformance Testing
Developer Vendor who is developing application software

19

IUT Implementation Under Test. The application software that has
implemented the AP and is subject to conformance testing

Test Site Location where CT is done

6.2 IUT Requirements

6.2.1 General

• Fully conforms with AP specifications (partial conformance not acceptable)

• Conforms with STEP physical file format as described in the STEP documentation [ISO21]

6.2.2 AP Input

• Reads properly formatted and syntactically correct AP files

• Recognizes improperly formatted or syntactically incorrect AP files

• Recognizes errors in entity values and relationships as specified by the AP

6.2.3 AP Output

• Generates AP files that are properly formatted and syntactically correct

• Can generate every entity specified by the AP

6.2.4 AP File Integrity

• Recognizes all AP entities (i.e. ability to use them)7

• Generates correct entity values and relationships (i.e. modifications made by IUT on entities

7Ability to modify every AP entity gives some indication of satisfying
this requirement.

20

and entity relationships are done correctly within bounds specified by the AP)

6.3 Requirements for System to Test IUT

The system to test IUTs will have two components:

• AP file generator to generate test AP files for the IUT to read8

• AP file tester to test the AP files that the IUT generates

6.3.1 AP File Generator

• Generates set of AP files

• Generates all AP entities within set of files produced

• Generates IUT test procedures that are customized to set of files produced9

6.3.2 AP File Tester

• Configures testing based on test procedures produced by AP file generator

• Checks if test set of AP output files generated by IUT during CT has correct syntax

• Checks that every entity is in test set

• Checks entity and relationship correctness

• Produces output report:

8AP files generated by the Test Site’s file generator or by the
Developer’s IUT are written to PC-DOS formatted diskettes. Other formats can
be negotiated.

9The document includes procedures that specify operations that the IUT
should do after inputting the AP input files, and before outputting the AP
output files. The output files will be tested by the AP file tester.

21

• Pass or fail
• If fail, reasons for failure

6.4 Conformance Testing Procedure10

6.4.1 Test Site Responsibilities

• Maintain a CT system accredited by suitable authority and agreeable to all parties

• Use personnel for IUT testing who are unbiased towards Developer and who are sufficiently
versed in IUT application area to conduct CT with brief training

• Provide Developer with test results and archive at Test Site (not for distribution)

• Certify IUTs that have passed CT, and authorize Developers to publicize that fact

• Maintain confidentiality of test results

6.4.2 Developer Responsibilities

• Deliver IUT to Test Site. Delivery must include hardware if other suitable arrangements
cannot be made (e.g. if hardware required is unavailable at Test Site)

• Demonstrate system to Test Site personnel sufficiently, so that latter can run CT tests

• May display CT certification only on versions of products that have passed CT

6.4.3 Procedures

The following procedures are conducted at the Test Site.

10The Conformance Testing procedure for STEP APs will be standardized in
ISO 10303-32 [ISO32].

22

• Receive delivery of IUT from Developer
• Install IUT with Developer’s assistance
• Receive Developer training to enable IUT test personnel to conduct CT

• Create input files for IUT
• Generate set of AP files

• Contains all AP entities
• Includes incorrect files

• Generate IUT test procedures document (archive)

• Execute IUT
• Execute procedures from test procedures document
• Generate output specified from the procedures document

• Check the AP files produced by the IUT
• Use input consisting of:

• AP input files to IUT (generated by AP File Generator)
• AP output files, generated in previous step by IUT
• Test procedures document, likewise generated in previous step

• Generate report that documents test results

• Process results
• Send report of test results to Developer
• Send acceptance certification to Developer if IUT passed CT
• Archive test results at Test Site

23

APPENDIX A: REFERENCES:

[CLA] Clark, Stephen N.,An Introduction to the NIST PDES Toolkit,NISTIR 4336,
National Institute of Standards and Technology, Gaithersburg, MD, May 1990.

[DLA] Defense Logistics Agency,Third Annual Academic Apparel Research
Conference, Manufacturing Technology Information Analysis Center, 10 West
35th Street, Chicago, IL 60616-3799, February 1992.

[ISO11] ISO DIS 10303-11,Product Data Representation and Exchange - Part 11: The
EXPRESS Language Reference Manual, ISO, August 1992.

[ISO21] ISO CD 10303-21,Product Data Representation and Exchange - Part 21:
Clear Text Encoding of the Exchange Structure, ISO, March 1991.

[ISO31] ISO CD 10303-31,Product Data Representation and Exchange - Part 31:
Conformance Testing Methodology and Framework: General Concepts, ISO,
January 14, 1992.

[ISO32] ISO Working Draft,Product Data Representation and Exchange - Part 32:
Conformance Testing Methodology and Framework: Requirements on Testing
Laboratories and Clients, ISO TC184/SC4/WG6 N 52, ISO, December 1992.

[KEM] Kemmerer, S., editor,Requirements and Recommendations for STEP
Conformance Testing, NISTIR 4743 (Revised), National Institute of Standards
and Technology, Gaithersburg, MD, June 1992.

[KRA] Kramer, T. R., et al.,Issues and Recommendations for a STEP Application
Protocol Framework, NISTIR 4755, National Institute of Standards and
Technology, Gaithersburg, MD, January 1992.

[LEE1] Lee, Y. T.,On Extending the Standard for the Exchange of Product Data to
Represent Two-Dimensional Apparel Pattern Pieces, NISTIR 4358, National
Institute of Standards and Technology, Gaithersburg, MD, June 1990.

[LEE2] Lee, Y. T., "Apparel Product Data Exchange Standard," Proceedings of the
Third Annual Academic Apparel Research Conference on Implementing
Advanced Technology, Atlanta, GA, February 1992.

24

[MON] Moncarz, H. T. and Lee, Y. T.,Apparel STEP Translator, NISTIR 4612,
National Institute of Standards and Technology, Gaithersburg, MD, June 1991.

[NIJ] Nijssen, G. M. and Halpin, T. A.,Conceptual Schema and Relational Database
Design: A Fact Oriented Approach, Prentice Hall, 1989.

[PAL] Palmer, M.,Guidelines for the Development and Approval of STEP Application
Protocols, ISO TC184/SC4/WG4 N 25 (P5), ISO, September 1991.

[USA] U.S. Air Force Wright Aeronautical Laboratories,Information Modeling
Manual IDEF1-Extended (IDEF1x), Report AFWAL-TR-86-4006, Volume 5,
Part 4, Manufacturing Technology Directorate, U.S. Air Force Wright
Aeronautical Laboratories 1986.

APPENDIX B: GLOSSARY OF EXPRESS TERMS

The following is the list of EXPRESS keywords that are used in the RWPM model. Brief
definitions of these keywords are derived from the "The EXPRESS Language Reference
Manual" [ISO11] and are presented below for the reader’s convenience.

ABSTRACT SUPERTYPE An ABSTRACT SUPERTYPE is a SUPERTYPE entity that is
not intended to be directly instantiated.

BAG The key word BAG is used to specify a bag data type. A bag
data type represents an unordered collections of like elements.
The number of elements that can be held in a bag can optionally
be specified. If the size is not specified, the bag can hold any
number of elements. Duplicate elements are allowed in a bag.

BOOLEAN A BOOLEAN data type represents a TRUE or FALSE value.

END_ENTITY The key word END_ENTITY is used to terminate an entity
declaration.

END_SCHEMA The key word END_SCHEMA is used to terminate a schema
declaration.

END_TYPE The key word END_TYPE is used to terminate a type
declaration.

25

ENTITY The key word ENTITY is used to specify an entity type. An
entity type characterizes a collection of real-world physical or
conceptual objects which have common properties. Any entity
declared in a schema can be used as the data type of an attribute,
local variable or formal parameter. Using an entity as an
attribute’s data type establishes a relationship between the two
entities.

ENUMERATION The key word ENUMERATION is used to specify an
enumeration data type. An enumeration data type is an ordered
set of values represented by names. Each enumeration item
belongs only to the data type which defines it and must be
unique within that type definition.

INTEGER The key word INTEGER is used to specify an integer data type.
An integer data type represents a value of an integer number, the
magnitude of which is unconstrained.

LIST The key word LIST is used to specify a list data type. A list
data type represents an ordered collections of like elements. The
number of elements that can be held in a list can optionally be
specified. If the size is not specified, the list can hold any
number of elements. Duplicate elements are allowed in a list.

OF The key word OF is used together with other keywords such as
BAG, LIST, SET, ENUMERATION, SUBTYPE, SUPERTYPE,
etc.

ONEOF The key word ONEOF is used to define the constraint on the
relationship between the subtypes of a particular supertype. The
ONEOF constraint is used when the subtypes are mutually
exclusive.

OPTIONAL The key word OPTIONAL is used to indicate that the attribute
need not have a value in order for an instance of that entity to
be valid. In a given entity instance, an attribute marked as
optional may have no actual value, in which case the value is
said to be null. The null value function (NVL) which returns

26

either the input value or an alternate value in the case where the
input has a null value may be used when a null value is
unacceptable.

REAL The key word REAL is used to specify a real data type. A real
data type represents rational, irrational, and scientific real
numbers. Rational and irrational numbers have infinite resolution
and are exact. Scientific numbers represent values which are
known only to a specified precision.

SCHEMA The key word SCHEMA is used to specify a schema type. A
schema declaration creates a new scope in which the following
objects may be declared: constant, entity, function, procedure,
rule, and type.

SET The key word SET is used to specify a set data type. A set data
type represents an unordered collections of like elements. The
number of elements that can be held in a set can optionally be
specified. If the size is not specified, the set can hold any
number of elements. No two elements of a set can have the
same value.

STRING The key word STRING is used to specify a string data type. A
string data type represents a sequence of zero or more characters.

SUBTYPE The key words SUBTYPE and SUPERTYPE are used for
classification purposes. A subtype is a more specific type than
its supertype(s). A supertype is a more general type than its
subtype(s). Thus, every instance of a subtype is an instance of
its supertype(s). An entity is a subtype if and only if it contains
a non-empty subtype clause. An entity does not have to declare
itself to be a supertype. The subtype/supertype relationship is
transitive. An entity is a supertype if it is named in the subtype
clause of at least one other entity or declares itself to be an
abstract supertype. A subtype may have more than one
supertype, and a supertype may have more than one subtype. A
supertype may itself be a subtype of one or more other entity
types. Furthermore, a subtype cannot be the supertype of any
type in the list of all its supertypes.

27

SUPERTYPE See "SUBTYPE".

TYPE The key word TYPE is used to specify a defined data type. A
defined data type is a user extension to the set of standard data
types. A defined data type can be used as any other data type
by referencing the name given to it.

UNIQUE The key word UNIQUE is used to specify a unique rule. A
unique rule specifies either a single attribute name or a list of
two or more attribute names. A rule which specifies a single
attribute name is a "simple uniqueness constraint", requiring that
any value of that attribute is associated with only one instance of
that entity type. A rule which specifies two or more attribute
names is a "joint uniqueness constraint", requiring that any set of
values, one from each of the named attributes, is associated with
only one instance of that entity type.

28

APPENDIX C: SAMPLE STEP EXCHANGE FILE

ISO-10303-21;
HEADER;
FILE_DESCRIPTION((’This file contains a sample RWPM STEP file’),
’RWPM_LEVEL 1.0’);
FILE_NAME(’Example RWPM File No.1’,
’1992-09-18 T15:05:00’,
(’Tina Lee ’,’NIST Building 220, Room A-127’,’Gaithersburg, MD 20899’),
(’National Institute of Standards and Technology’,
’Factory Automation Systems Division’),
’RWPM Version 1.0’,
’APDES RWPM Release 1.0’,
’Approved by Tina Lee’);
FILE_SCHEMA((’RWPM_SCHEMA’));
ENDSEC;
DATA;
#1001=POINT(23.62,16.24);
#1002=POINT(22.88,18.76);
#1003=POINT(24.10,21.90);
#1004=POINT(27.91,21.29);
#1005=POINT(34.86,20.24);
#1006=POINT(39.92,19.73);
#1007=POINT(51.40,20.77);
#1008=POINT(51.49,16.24);
#1009=POINT(51.40,11.71);
#1010=POINT(39.92,12.75);
#1011=POINT(34.86,12.24);
#1012=POINT(27.91,11.19);
#1013=POINT(24.10,10.58);
#1014=POINT(22.88,13.72);
#1015=POINT(26.36,17.73);
#1016=POINT(23.62,17.13);
#1017=POINT(23.55,17.52);
#1018=POINT(23.43,17.94);
#1019=POINT(23.14,18.42);
#1020=POINT(23.37,19.52);
#1021=POINT(23.69,20.23);
#1022=POINT(23.91,20.92);

29

#1023=POINT(25.99,21.60);
#1024=POINT(30.19,20.93);
#1025=POINT(32.42,20.59);
#1026=POINT(36.71,19.99);
#1027=POINT(38.69,19.76);
#1028=POINT(39.40,19.72);
#1029=POINT(41.17,19.83);
#1030=POINT(43.07,20.10);
#1031=POINT(45.09,20.37);
#1032=POINT(47.42,20.57);
#1033=POINT(49.38,20.69);
#1034=POINT(49.38,11.79);
#1035=POINT(47.42,11.91);
#1036=POINT(45.09,12.11);
#1037=POINT(43.07,12.38);
#1038=POINT(41.17,12.65);
#1039=POINT(39.40,12.76);
#1040=POINT(38.69,12.72);
#1041=POINT(36.71,12.49);
#1042=POINT(32.42,11.89);
#1043=POINT(30.19,11.55);
#1044=POINT(25.99,10.88);
#1045=POINT(23.91,11.56);
#1046=POINT(23.69,12.25);
#1047=POINT(23.37,12.96);
#1048=POINT(23.14,14.06);
#1049=POINT(23.43,14.54);
#1050=POINT(23.55,14.96);
#1051=POINT(23.62,15.35);
#1052=POINT(41.56,17.76);
#1201= &SCOPE

#101=POLYLINE((#1001,#1016,#1017,#1018,#1019,#1002));
ENDSCOPE
COMPOSITE_CURVE_FEATURE(.BOUNDARY_CUT.,#101);

#1202= &SCOPE
#102=POLYLINE((#1002,#1020,#1021,#1022,#1003));
ENDSCOPE
COMPOSITE_CURVE_FEATURE(.BOUNDARY_CUT.,#102);

#1203= &SCOPE

30

#103=POLYLINE((#1003,#1023,#1004));
ENDSCOPE
COMPOSITE_CURVE_FEATURE(.BOUNDARY_CUT.,#103);

#1204= &SCOPE
#104=POLYLINE((#1004,#1024,#1025,#1005));
ENDSCOPE
COMPOSITE_CURVE_FEATURE(.BOUNDARY_CUT.,#104);

#1205= &SCOPE
#105=POLYLINE((#1005,#1026,#1027,#1028,#1006));
ENDSCOPE

COMPOSITE_CURVE_FEATURE(.BOUNDARY_CUT.,#105);
#1206= &SCOPE

#106=POLYLINE((#1006,#1029,#1030,#1031,#1032,#1033,#1007));
ENDSCOPE
COMPOSITE_CURVE_FEATURE(.BOUNDARY_CUT.,#106);

#1207= &SCOPE
#107=POLYLINE((#1007,#1008));
ENDSCOPE
COMPOSITE_CURVE_FEATURE(.BOUNDARY_CUT.,#107);

#1208= &SCOPE
#108=POLYLINE((#1008,#1009));
ENDSCOPE
COMPOSITE_CURVE_FEATURE(.BOUNDARY_CUT.,#108);

#1209= &SCOPE
#109=POLYLINE((#1009,#1034,#1035,#1036,#1037,#1038,#1010));
ENDSCOPE
COMPOSITE_CURVE_FEATURE(.BOUNDARY_CUT.,#109);

#1210= &SCOPE
#110=POLYLINE((#1010,#1039,#1040,#1041,#1011));
ENDSCOPE
COMPOSITE_CURVE_FEATURE(.BOUNDARY_CUT.,#110);

#1211= &SCOPE
#111=POLYLINE((#1011,#1042,#1043,#1012));
ENDSCOPE
COMPOSITE_CURVE_FEATURE(.BOUNDARY_CUT.,#111);

#1212= &SCOPE
#112=POLYLINE((#1012,#1044,#1013));
ENDSCOPE
COMPOSITE_CURVE_FEATURE(.BOUNDARY_CUT.,#112);

31

#1213= &SCOPE
#113=POLYLINE((#1013,#1045,#1046,#1047,#1014));
ENDSCOPE

COMPOSITE_CURVE_FEATURE(.BOUNDARY_CUT.,#113);
#1214= &SCOPE

#114=POLYLINE((#1014,#1048,#1049,#1050,#1051,#1001));
ENDSCOPE
COMPOSITE_CURVE_FEATURE(.BOUNDARY_CUT.,#114);

#1215= &SCOPE
#115=LINE(#1015,#1052);
ENDSCOPE
ORIENTATION_CONSTRAINT(.STRIPE_REFERENCE_LINE.,#115);

#1216=V_NOTCH(#1001,0.1875,0.25);
#1217=V_NOTCH(#1004,0.1875,0.25);
#1218=V_NOTCH(#1005,0.1875,0.25);
#1219=V_NOTCH(#1006,0.1875,0.25);
#1220=V_NOTCH(#1008,0.1875,0.25);
#1221=V_NOTCH(#1010,0.1875,0.25);
#1222=V_NOTCH(#1011,0.1875,0.25);
#1223=V_NOTCH(#1012,0.1875,0.25);
#1301=BASIC_PATTERN_PIECE(’BACK CUT 1’,

$,
(#1201,#1202,#1203,#1204,#1205,#1206,#1207,#1208,
#1209,#1210,#1211,#1212,#1213,#1214,#1215,#1216,
#1217,#1218,#1219,#1220,#1221,#1222,#1223),

$);
#1401=PATTERN_PIECE(#1301,.BASIC.,1);
#1501=PATTERN(’style_name’,$,$,(#1401));
#2001=GRADE_POINT(#1001,’299’);
#2002=GRADE_POINT(#1002,’225’);
#2003=GRADE_POINT(#1003,’281’);
#2004=GRADE_POINT(#1004,’4’);
#2005=GRADE_POINT(#1005,’5’);
#2006=GRADE_POINT(#1006,’220’);
#2007=GRADE_POINT(#1007,’221’);
#2008=GRADE_POINT(#1008,’10’);
#2009=GRADE_POINT(#1009,’222’);
#2010=GRADE_POINT(#1010,’223’);
#2011=GRADE_POINT(#1011,’17’);

32

#2012=GRADE_POINT(#1012,’18’);
#2013=GRADE_POINT(#1013,’282’);
#2014=GRADE_POINT(#1014,’224’);
#2015=GRADE_POINT(#1015,’11’);
#2101= &SCOPE

#201=GRADE_DELTA(-0.0517,0.0000);
#202=GRADE_DELTA(-0.0650,0.0000);
#203=GRADE_DELTA(-0.0600,0.0000);
#204=GRADE_DELTA(-0.0683,0.0000);
ENDSCOPE
GRADE_DATA_AT_POINT(#2001,.F.,(#201,#202,#203,#204),$);

#2102= &SCOPE
#205=GRADE_DELTA(-0.0567,0.0317);
#206=GRADE_DELTA(-0.0650,0.0300);
#207=GRADE_DELTA(-0.0600,0.0300);
#208=GRADE_DELTA(-0.0633,0.0317);
ENDSCOPE
GRADE_DATA_AT_POINT(#2002,.F.,(#205,#206,#207,#208),$);

#2103= &SCOPE
#209=GRADE_DELTA(-0.0633,0.0633);
#210=GRADE_DELTA(-0.0650,0.0650);
#211=GRADE_DELTA(-0.0600,0.0600);
#212=GRADE_DELTA(-0.0467,0.0467);
ENDSCOPE
GRADE_DATA_AT_POINT(#2003,.F.,(#209,#210,#211,#212),$);

#2104= &SCOPE
#213=GRADE_DELTA(0.0000,0.0367),
#214=GRADE_DELTA(0.0000,0.0550);
#215=GRADE_DELTA(0.0000,0.0550);
#216=GRADE_DELTA(0.0000,0.0567);
ENDSCOPE
GRADE_DATA_AT_POINT(#2004,.T.,(#213,#214,#215,#216),$);

#2105= &SCOPE
#217=GRADE_DELTA(0.0000,0.0367),
#218=GRADE_DELTA(0.0000,0.0550);
#219=GRADE_DELTA(0.0000,0.0550);
#220=GRADE_DELTA(0.0000,0.0567);
ENDSCOPE
GRADE_DATA_AT_POINT(#2005,.T.,(#217,#218,#219,#220),$);

33

#2106= &SCOPE
#221=GRADE_DELTA(0.0000,0.0367),
#222=GRADE_DELTA(0.0000,0.0550);
#223=GRADE_DELTA(0.0000,0.0550);
#224=GRADE_DELTA(0.0000,0.0567);
ENDSCOPE
GRADE_DATA_AT_POINT(#2006,.T.,(#221,#222,#223,#224),$);

#2107= &SCOPE
#225=GRADE_DELTA(0.0000,0.0367),
#226=GRADE_DELTA(0.0000,0.0550);
#227=GRADE_DELTA(0.0000,0.0550);
#228=GRADE_DELTA(0.0000,0.0567);
ENDSCOPE
GRADE_DATA_AT_POINT(#2007,.F.,(#225,#226,#227,#228),$);

#2108= &SCOPE
#229=GRADE_DELTA(0.0000,0.0000),
#230=GRADE_DELTA(0.0000,0.0000);
#231=GRADE_DELTA(0.0000,0.0000);
#232=GRADE_DELTA(0.0000,0.0000);
ENDSCOPE
GRADE_DATA_AT_POINT(#2008,.T.,(#229,#230,#231,#232),$);

#2109= &SCOPE
#233=GRADE_DELTA(0.0000,-0.0367),
#234=GRADE_DELTA(0.0000,-0.0550);
#235=GRADE_DELTA(0.0000,-0.0550);
#236=GRADE_DELTA(0.0000,-0.0567);
ENDSCOPE
GRADE_DATA_AT_POINT(#2009,.F.,(#233,#234,#235,#236),$);

#2110= &SCOPE
#237=GRADE_DELTA(0.0000,-0.0367),
#238=GRADE_DELTA(0.0000,-0.0550);
#239=GRADE_DELTA(0.0000,-0.0550);
#240=GRADE_DELTA(0.0000,-0.0567);
ENDSCOPE
GRADE_DATA_AT_POINT(#2010,.T.,(#237,#238,#239,#240),$);

#2111= &SCOPE
#241=GRADE_DELTA(0.0000,-0.0367),
#242=GRADE_DELTA(0.0000,-0.0550);
#243=GRADE_DELTA(0.0000,-0.0550);

34

#244=GRADE_DELTA(0.0000,-0.0567);
ENDSCOPE
GRADE_DATA_AT_POINT(#2011,.T.,(#241,#242,#243,#244),$);

#2112= &SCOPE
#245=GRADE_DELTA(0.0000,-0.0367),
#246=GRADE_DELTA(0.0000,-0.0550);
#247=GRADE_DELTA(0.0000,-0.0550);
#248=GRADE_DELTA(0.0000,-0.0567);
ENDSCOPE
GRADE_DATA_AT_POINT(#2012,.T.,(#245,#246,#247,#248),$);

#2113= &SCOPE
#249=GRADE_DELTA(-0.0633,-0.0633),
#250=GRADE_DELTA(-0.0650,-0.0650);
#251=GRADE_DELTA(-0.0600,-0.0600);
#252=GRADE_DELTA(-0.0467,-0.0467);
ENDSCOPE

GRADE_DATA_AT_POINT(#2013,.F.,(#249,#250,#251,#252),$);
#2114= &SCOPE

#253=GRADE_DELTA(-0.0567,-0.0317),
#254=GRADE_DELTA(-0.0650,-0.0300);
#255=GRADE_DELTA(-0.0600,-0.0300);
#256=GRADE_DELTA(-0.0633,-0.0317);
ENDSCOPE
GRADE_DATA_AT_POINT(#2014,.F.,(#253,#254,#255,#256),$);

#2115= &SCOPE
#257=GRADE_DELTA(0.0000,0.0000),
#258=GRADE_DELTA(0.0000,0.0000);
#259=GRADE_DELTA(0.0000,0.0000);
#260=GRADE_DELTA(0.0000,0.0000);
ENDSCOPE
GRADE_DATA_AT_POINT(#2015,.F.,(#257,#258,#259,#260),$);

#2201=PATTERN_SIZE(6.0,’REGULAR’);
#2202=PATTERN_SIZE(12.0,’REGULAR’);
#2203=PATTERN_SIZE(14.0,’REGULAR’);
#2204=PATTERN_SIZE(16.0,’REGULAR’);
#2205=PATTERN_SIZE(22.0,’REGULAR’);
#2301=GRADE_RULES_OF_PIECE(’BACK_CUT_1’,$,$,

(#2101,#2102,#2103,#2104,#2105,#2106,#2107,#2108,#2109,
#2110,#2111,#2112,#2113,#2114,#2115));

35

#2401=GRADE_RULES_OF_PATTERN($,(#2201,#2202,#2203,#2204,#2205),(#2301));
#3301=READY_TO_WEAR_PATTERN(.INCH.,#2203,#1501,#2401);
ENDSEC;
END-ISO-10303-21;

*)

36

